Electricity generation by Geobacter sulfurreducens attached to gold electrodes.

نویسندگان

  • Hanno Richter
  • Kevin McCarthy
  • Kelly P Nevin
  • Jessica P Johnson
  • Vincent M Rotello
  • Derek R Lovley
چکیده

The versatility of gold for electrode manufacture suggests that it could be an ideal material for some microbial fuel cell applications. However, previous studies have suggested that microorganisms that readily transfer electrons to graphite do not transfer electrons to gold. Investigations with Geobacter sulfurreducens demonstrated that it could grow on gold anodes producing current nearly as effectively as with graphite anodes. Current production was associated with the development of G. sulfurreducens biofilms up to 40 microm thick. No current was produced if pilA, the gene for the structural protein of the conductive pili of G. sulfurreducens, was deleted. The finding that gold is a suitable anode material for microbial fuel cells offers expanded possibilities for the construction of microbial fuel cells and the electrochemical analysis of microbe-electrode interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electricity production by Geobacter sulfurreducens attached to electrodes.

Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The elect...

متن کامل

Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness.

Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria ...

متن کامل

Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides

Geobacter sulfurreducens generates electrical current by coupling intracellular oxidation of organic acids to the reduction of proteins on the cell surface that are able to interface with electrodes. This ability is attributed to the bacterium's capacity to respire other extracellular electron acceptors that require contact, such as insoluble metal oxides. To directly investigate the genetic ba...

متن کامل

An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

UNLABELLED Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite ...

متن کامل

Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires

Electricity generation by Geobacter sulfurreducens biofilms grown on electrodes involves matrix-associated electron carriers, such as c-type cytochromes. Yet, the contribution of the biofilm's conductive pili remains uncertain, largely because pili-defective mutants also have cytochrome defects. Here we report that a pili-deficient mutant carrying an inactivating mutation in the pilus assembly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 24 8  شماره 

صفحات  -

تاریخ انتشار 2008